3.217 \(\int \frac {(e \tan (c+d x))^m}{\sqrt {a+a \sec (c+d x)}} \, dx\)

Optimal. Leaf size=131 \[ \frac {2^{m+\frac {1}{2}} \left (\frac {1}{\sec (c+d x)+1}\right )^{m+\frac {1}{2}} (e \tan (c+d x))^{m+1} F_1\left (\frac {m+1}{2};m-\frac {1}{2},1;\frac {m+3}{2};-\frac {a-a \sec (c+d x)}{\sec (c+d x) a+a},\frac {a-a \sec (c+d x)}{\sec (c+d x) a+a}\right )}{d e (m+1) \sqrt {a \sec (c+d x)+a}} \]

[Out]

2^(1/2+m)*AppellF1(1/2+1/2*m,-1/2+m,1,3/2+1/2*m,(-a+a*sec(d*x+c))/(a+a*sec(d*x+c)),(a-a*sec(d*x+c))/(a+a*sec(d
*x+c)))*(1/(1+sec(d*x+c)))^(1/2+m)*(e*tan(d*x+c))^(1+m)/d/e/(1+m)/(a+a*sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 131, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.040, Rules used = {3889} \[ \frac {2^{m+\frac {1}{2}} \left (\frac {1}{\sec (c+d x)+1}\right )^{m+\frac {1}{2}} (e \tan (c+d x))^{m+1} F_1\left (\frac {m+1}{2};m-\frac {1}{2},1;\frac {m+3}{2};-\frac {a-a \sec (c+d x)}{\sec (c+d x) a+a},\frac {a-a \sec (c+d x)}{\sec (c+d x) a+a}\right )}{d e (m+1) \sqrt {a \sec (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(e*Tan[c + d*x])^m/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

(2^(1/2 + m)*AppellF1[(1 + m)/2, -1/2 + m, 1, (3 + m)/2, -((a - a*Sec[c + d*x])/(a + a*Sec[c + d*x])), (a - a*
Sec[c + d*x])/(a + a*Sec[c + d*x])]*((1 + Sec[c + d*x])^(-1))^(1/2 + m)*(e*Tan[c + d*x])^(1 + m))/(d*e*(1 + m)
*Sqrt[a + a*Sec[c + d*x]])

Rule 3889

Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> -Simp[(2^(m
 + n + 1)*(e*Cot[c + d*x])^(m + 1)*(a + b*Csc[c + d*x])^n*(a/(a + b*Csc[c + d*x]))^(m + n + 1)*AppellF1[(m + 1
)/2, m + n, 1, (m + 3)/2, -((a - b*Csc[c + d*x])/(a + b*Csc[c + d*x])), (a - b*Csc[c + d*x])/(a + b*Csc[c + d*
x])])/(d*e*(m + 1)), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[n]

Rubi steps

\begin {align*} \int \frac {(e \tan (c+d x))^m}{\sqrt {a+a \sec (c+d x)}} \, dx &=\frac {2^{\frac {1}{2}+m} F_1\left (\frac {1+m}{2};-\frac {1}{2}+m,1;\frac {3+m}{2};-\frac {a-a \sec (c+d x)}{a+a \sec (c+d x)},\frac {a-a \sec (c+d x)}{a+a \sec (c+d x)}\right ) \left (\frac {1}{1+\sec (c+d x)}\right )^{\frac {1}{2}+m} (e \tan (c+d x))^{1+m}}{d e (1+m) \sqrt {a+a \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]  time = 2.35, size = 0, normalized size = 0.00 \[ \int \frac {(e \tan (c+d x))^m}{\sqrt {a+a \sec (c+d x)}} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[(e*Tan[c + d*x])^m/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

Integrate[(e*Tan[c + d*x])^m/Sqrt[a + a*Sec[c + d*x]], x]

________________________________________________________________________________________

fricas [F]  time = 0.57, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\left (e \tan \left (d x + c\right )\right )^{m}}{\sqrt {a \sec \left (d x + c\right ) + a}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*tan(d*x+c))^m/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((e*tan(d*x + c))^m/sqrt(a*sec(d*x + c) + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (e \tan \left (d x + c\right )\right )^{m}}{\sqrt {a \sec \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*tan(d*x+c))^m/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((e*tan(d*x + c))^m/sqrt(a*sec(d*x + c) + a), x)

________________________________________________________________________________________

maple [F]  time = 1.67, size = 0, normalized size = 0.00 \[ \int \frac {\left (e \tan \left (d x +c \right )\right )^{m}}{\sqrt {a +a \sec \left (d x +c \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*tan(d*x+c))^m/(a+a*sec(d*x+c))^(1/2),x)

[Out]

int((e*tan(d*x+c))^m/(a+a*sec(d*x+c))^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (e \tan \left (d x + c\right )\right )^{m}}{\sqrt {a \sec \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*tan(d*x+c))^m/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((e*tan(d*x + c))^m/sqrt(a*sec(d*x + c) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (e\,\mathrm {tan}\left (c+d\,x\right )\right )}^m}{\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*tan(c + d*x))^m/(a + a/cos(c + d*x))^(1/2),x)

[Out]

int((e*tan(c + d*x))^m/(a + a/cos(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (e \tan {\left (c + d x \right )}\right )^{m}}{\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*tan(d*x+c))**m/(a+a*sec(d*x+c))**(1/2),x)

[Out]

Integral((e*tan(c + d*x))**m/sqrt(a*(sec(c + d*x) + 1)), x)

________________________________________________________________________________________